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Abstract:   

In according to this work, A generating set S for a group G is independent if and only if ,for every s 

𝜖 𝑆, the subgroup created by S⧵{𝑠} is correctly contained in G. We characterize the structure of finite 

groups G such that the cardinalities of independent generating sets for G appear as exactly two integers. 
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1- Introduction 

The lowest number of generators of a finite group G is denoted by d(G) . A generating set S for a group 

G is independent (also known called irredundant) if  

                                      〈𝑆 ⧵  {𝑠}〉 < 𝐺  for all s ∈ 𝑆. 
Let m(G) represent the largest independent generating set size for G. By Apisa and Klopsch, the finite 

groups with m(G) = d(G) are categorized. 

1.1 Theorem:(𝑨𝒑𝒊𝒔𝒂 − 𝑲𝒍𝒐𝒑𝒔𝒄𝒉 , [𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟏. 𝟔]). G is soluble if d(G) = m(G). Additionally, 

either 

• For a prime p, G/Frat(G) is an elementary abelian p-group; or  

• G/Frat(G) = PQ, where Q is a nontrivial cyclic q-group for distinct primes p and q, and P is an 

elementary abelian p-group. Q acts faithfully on P via conjugation, and P (as a module for Q) 

is the direct sum of m (G)-1 isomorphic copies of a single simple Q-module. 

Given this outcome, Apisa and Klopsch propose a straight forward "classification problem": identify 

all finite groups G that satisfy m(G)-d(G) ≤ c, given a nonnegative integer c. Glasby has lately drawn 

attention to the specific instance c = 1 (see[7,Problem 2.3]). 

For every positive integer k with d(G) ≤k≤m(G), G contains an independent generating set of 

cardinality k, according to a nice result in universal algebra known as the Tarski irredundant basis 

theorem (see, for example, [3,Theorem 4.4]). Therefore, the condition m(G) –d(G) =1 is equivalent to 

the fact that there are only two possible cardinalities for an independent generating set of G. 

Consider a finite group, G. Remember that the subgroup created by G's minimal normal subgroups is 

called the socle of G, or soc(G). Additionally, G is considered monolithic primitive if it has a single 

minimal normal subgroup, and the identity of G's Frattini subgroup Frat(G) is G.  We establish the two 

primary outcomes listed below in this work. 

1.2 Theorem: Assume that G is a finite group with m(G) = d(G) +1 and Frat(G) = 1.G is a monolithic 

primitive group and G/soc (G) is cyclic of prime power order if G is not soluble, as shown by d(G) = 

2.Whiston and Sax[15] demonstrated that for any prime p that is not congruent to ± 1 modulo 8 or 10, 

m(PSL(2,p))=3. Specifically, we infer that there are an unlimited number of nonabelian simple groups 

G with m(G) = d(G)+1 since d(S) = 2 for every non abelian simple group. In Section 4, we additionally 

provide examples of non simple groups G such that m(G) = d(G)+1.  

1.3 Theorem: Assume that G is a finite group with m(G) = d(G) +1 and Frat (G) = 1. In the event that 

G is soluble, one of the following happens:  
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(𝑖) G ≅V⋊P, where V is an irreducible P-module that is not a p-group and P is a finite non cyclic p-

group; in this instance, d(G) = d(P);  
(𝑖𝑖) G ≅ V'⋊ H, where V is an irreducible faithful H-module, m(H) = 2, and either t = 1 or H is abelian; 

in this instance, d(G) = t+1; 
(𝑖𝑖𝑖) Let 𝑁2/𝑁1 ≤ Frat(G/𝑁2) and G /𝑁2  ≅ 𝑣𝑡 ⋊ H be two normal subgroups of G such that 1 ≤ 𝑁1 ≤ 

𝑁2 , 𝑁1 is an abelian minimum normal subgroup of G; in this case, d(G) = t+1. Let V be an irreducible 

H-module and H be a nontrivial cyclic group of prime power order.  

Examples of finite soluble groups G with m(G) = d(G) +1 for each of the three scenarios emerging 

from theorem 1.3 are provided in Section 4. 

 

2 – Preliminary results 

Let A be the unique minimal normal subgroup of monolithic primitive group L. Suppose that 𝐿𝑘 is the 

k-fold direct product of L for any positive integer k. The subgroup 𝐿𝑘 of 𝐿𝑘, defined by, is the crown-

based power of L of size k.  

                                   𝐿1 ≔  {(𝑙1, … , 𝑙𝑘) ∈ 𝐿𝑘|𝑙1 ≡ ⋯  ≡ 𝑙𝑘 𝑚𝑜𝑑 𝐴}. 

[4] establishes that for each finite group G, there is a homomorphic image 𝐿𝑘 of G and a monolithic 

group L such that 
(1) d(𝐿 /𝑠𝑜𝑐𝐿) < 𝑑(𝐺); and  
(2) d(𝐿𝑘) = 𝑑(𝐺). 
This kind of group 𝐿𝑘 is known as a generating crown-based power for G. 

The explicit computation of d(𝑑𝑘) in terms of k and the structure of L is discussed in [4]. Evaluating 

the maximal k for each monolithic group L such that 𝐿𝑘 is a homomorphic image of G is a crucial step 

in determining d(G) from the behavior of the crown-based power homomorphic images of (G). The 

primary factors of G have an equivalency relation that gives birth to this number, k. Here we provide 

some information. 

If groups G and A act on each other via automorphisms, then A is a G-group. Furthermore, if G does 

not stabilize any nontrivial proper subgroups of A, then A is irreducible. If there is a group 

isomorphism ∅:A →B such that ∅(g(a) )=g(∅(a) ) for all a ∈A and g ∈G, then two G-groups, A and 

B, are G-isomorphic. In accordance with [8], we declare that two irreducible G-groups, A and B, 

designated as A ~𝐺B,are G-equivalent if an isomorphism 𝜱:A ⋊ G→B⋊G exists, which confines to 

a G-isomorphism ∅:A →B and generates the identity G ≅ AG/A→BG/B ≅G. Put another way, this 

implies that the diagram commutes.                                            

                                                 1 →  A → 𝐴 ⋊ 𝐺  → 𝐺 → 1 

                                                         ↓ ∅       ↓ 𝜱           ⃦   → 𝟏 

                                                  1 →  𝐵 → 𝐵 ⋊ 𝐺 → 𝐺  →  1 

Observe that two G-isomorphic G-groups are G-equivalent ,and the converse holds if A and B are 

abelian. 

Let A = X/Y is a Frattini chief factor if X/Y  is contained in the Frattini subgroup of G/y ; this is 

equivalent to saying that A is abelian and there is no complement to A in G. The number 𝛿𝐺(𝐴)  of 

non –Frattini chief factors that are G-equivalent to A, in any chief series of G, does not depend on the 

particular choice of such a series. 

Now, we denote by 𝐿𝐺(𝐴) the monolithic primitive group associated to A, that is,  

                                    𝐿𝐺(𝐴): = {
𝐴 ⋊ (𝐺/𝐶𝐺(𝐴)) 𝑖𝑓 𝐴 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛,

𝐺/𝐶𝐺(𝐴) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

If A is a non-Frattini chief factor of G, then 𝐿𝐺(𝐴) is a homomorphic image of G. More precisely, 

there exists a normal subgroup N such that G/N ≅  𝐿𝐺(𝐴) and soc (𝐺/𝑁)~𝐺𝐴. We identify soc(𝐿𝐺(𝐴)) 

with A, as G-groups. 

Consider now all the normal subgroups N of G with the property that G/N ≅ 𝐿𝐺(𝐴) and soc (𝐺/𝑁)~𝐺  

A. The intersection 𝑅𝐺(𝐴) of all these subgroups has the property that G/𝑅𝐺(𝐴) is isomorphic to the 

crown –based power (𝐿𝐺(𝐴))
𝛿𝐺(𝐴).

The soce  𝐼𝐺(𝐴)/ 𝑅𝐺(𝐴)𝑜𝑓 𝐺/𝑅𝐺(𝐴)  is called the A-crown of G 

and it is a direct product of 𝛿𝐺(𝐴) minimal normal subgroups G-equivalent to A.  
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Note that if L is monolithic primitive and 𝐿𝐾 is a homomorphic image of G for some k ≥ 1, then L 

≅  𝐿𝐺(𝐴) for some non-Frattini chief factor A of G and k ≤  𝛿𝐺(𝐴) for some non-Frattini chief factor 

A of G and  𝑘 ≤  𝛿𝐺(𝐴). Furthermore, if (𝐿𝐺(𝐴))
𝑘
 is a generating crown-based power, then so is 

(𝐿𝐺(𝐴))
𝛿𝐺(𝐴)

; in this case, we say that A is a generating chief factor for G. 

            For an irreducible G-module M, set  

                                             𝑟𝐺(𝑀) ≔  𝑑𝑖𝑚𝐸𝑛𝑑𝐺(𝑀) M, 

                                             𝑆𝐺(𝑀) ≔ 𝑑𝑖𝑚𝐸𝑛𝑑𝐺(𝑀)
𝐻1(𝐺, 𝑀), 

                                             𝑡𝐺(𝑀) ≔ 𝑑𝑖𝑚𝐸𝑛𝑑𝐺(𝑀)
𝐻1(𝐺/𝐶𝐺(𝑀), 𝑀). 

It can be seen that  

                                                         𝑆𝐺(𝑀) = 𝑡𝐺(𝑀) + 𝛿𝐺(𝑀) 
(𝑠𝑒𝑒 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 [10, 1.2]). Now ,define 

ℎ𝐺(𝑀) ≔  {

𝛿𝐺(𝑀)                                        𝑖𝑓 𝑀 𝑖𝑠 𝑎 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝐺 − 𝑚𝑜𝑑𝑢𝑙𝑒,

⌊
𝑆𝐺(𝑀) − 1

𝑟𝐺(𝑀)
⌋ + 2 =  ⌊

𝛿𝐺(𝑀) + 𝑡𝐺(𝑀) − 1

𝑟𝐺(𝑀)
⌋ + 2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 

By [2,Theorem A] , 𝑡𝐺(𝑀) <  𝑟𝐺(𝑀) for any irreducible G-module M, and therefore 

                                                                      ℎ𝐺(𝑀) ≤ 𝛿𝐺(𝑀) + 1                       (2.1) 

The importance of ℎ𝐺(𝑀) is clarified by the following proposition. 

Proposition 2.1 [6,Proposition 2.1].If there exists an abelian generating chief factor A of G, then  

d𝑑(𝐺) = ℎ𝐺(𝐴). 
When G admits a non abelian generating chief factor A, a relation between 𝛿𝐺(𝐴) and d(G) is provided 

by the following result.  

Proposition 2.2. If d(G) ≥ 3 and there exists a nonabelian generating chief factor A of G, then  

                                𝛿𝐺(𝐴) >
|𝐴|𝑑(𝐺)−1

2|𝐶𝐴𝑢𝑡𝐴(𝐿𝐺(𝐴)/𝐴)|
≥

|𝐴|𝑑(𝐺)−2

2 𝑙𝑜𝑔2|𝐴|
 . 

Proof: Let A be a non-abelian generating main factor of G and assume that d(G) ≥3. Let ∅𝑋 (m) 

represent the number of ordered m-tuples (𝑥1, … … 𝑥𝑛) of elements of X that generate X for a finite 

group X. Describe  

                        L: = 𝐿𝐺(𝐴), 
                                     𝛾 ∶=  |𝐶𝐴𝑢𝑡 𝐴(𝐿/𝐴)|, 
                                    𝛿 ∶=  𝛿𝐺(𝐴), 
                                    d : = d(𝐺). 
In [4] ,it is proved that if m ≥ 𝑑(𝐿), 𝑡ℎ𝑒𝑛 

                                         d(𝐿𝑘) ≤ 𝑚 if and only if k ≤  
∅𝐿/𝐴(𝑚)

∅𝐿(𝑚)𝛾
 .                           (2.2) 

By the main result in [13],d(𝐿) = 𝑚𝑎𝑥(2, 𝑑(𝐿/𝐴)). Since A is a generating chief factor, from the 

definition, we  have d(𝐿/𝐴) < 𝑑(𝐿𝛿𝐺(𝐴)) = 𝑑(𝐺). As 2 <d(G) , it follows d(L) <d(G). Now ,by 

applying (2.2) with k = 𝛿𝐺(𝐴) and m = d(G) -1, we deduce that  

                                 𝛿𝐺(𝐴) >  
∅𝐿/𝐴(𝑑(𝐺)−1)

∅𝐿(𝑑(𝐺)−1)𝛾
                                                               (2.3) 

By [6,Corollary 1.2] 

                                  
∅𝐿/𝐴(𝑑(𝐺)−1)

∅𝐿(𝑑(𝐺)−1)
≥

|𝐴|𝑑(𝐺)−1

2
 .                                                           (2.4) 

Moreover, A ≅  𝑆𝑛,where n is a positive integer and S is a nonabelian simple group.  

In the proof of Lemma 1 in [5] ,it is shown that  

                                                         𝛾 ≤ 𝑛|𝑆|𝑛−1|𝐴𝑢𝑡 (𝑆)|. 
Now, [9] shows that |𝑂𝑢𝑡(𝑆)| ≤ 𝑙𝑜𝑔2(|𝑆|) and hence  

                                    𝛾 ≤ 𝑛|𝑆|𝑛𝑙𝑜𝑔2(|𝑆|) ≤ |𝑆|𝑛𝑙𝑜𝑔2(|𝑆|𝑛) = |𝐴|𝑙𝑜𝑔2(|𝐴|).     (2.5) 

From (2.3) ,(2.4) and (2.5) ,we obtain  

               𝛿𝐺(𝐴) >
∅𝐿/𝐴(𝑑(𝐺)−1)

∅𝐿(𝑑(𝐺)−1)𝛾
≥

|𝐴|𝑑(𝐺)−1

2|𝐴|𝐿𝑂𝐺2|𝐴|
=

|𝐴|𝑑(𝐺)−2

2𝑙𝑜𝑔2|𝐴|
. 

Recall that m(G) is the largest cardinality of an independent generating set of G. 
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Theorem 2.3 [14,Theorem 1.3]. Consider a finite group, G. Then, for every primary series of G, 

m(G) = a+b, where a and b denote the number of non-Frattini and nonabelian components, 

respectively. Moreover, m(G) = a  if G is soluble.  

3- Proof of the main results 

Given a finite group G, let d: = d(G) and let m: =m(G) . Suppose that m = d+1. Let A be a generating 

chief factor of G and let 𝛿 ≔ 𝛿𝐺(𝐴), 𝐿 ≔ 𝐿𝐺(𝐴). 
3.1 A is nonabelian: First ,suppose that 𝛿 ≥ 2. By Theorem 2.3 ,m ≥ 2𝛿 and therefore d ≥ 2𝛿 -1 ≥ 3. 
By Proposition 2.2,  

                           𝛿 >
|𝐴|𝑑−2

2𝑙𝑜𝑔2|𝐴|
≥

|𝐴|2𝛿−3

2𝑙𝑜𝑔2|𝐴|
≥

602𝛿−3

2𝑙𝑜𝑔260
, 

But this is never true.  

Suppose now that 𝛿 = 1. In this case, by the main theorem in [13], d = d(L) = max(2,d(L/A)) =2 and 

therefore m =3. Since L is an epimorphic image of G, we must have m(L)≤ 3. However ,m(L)≥ 3 by  

Corollary 2.4. Hence ,m(L) = m=3 and therefore it follows from [11,Lemma11] that G/Frat (G)≅
𝐿.Finally, by Theorem 2.3, m(L) =3 implies m(L/A) ≤ 1, and this is possible only if L/A is a cyclic p-

group .This concludes the proof of Theorem 1.2. 

3.2 A is abelian: It follows from Proposition 2.1 and (2.1) that  

                                                   𝛿 − 1 ≤ 𝑚 − 1 = 𝑑 =  ℎ𝐺(𝐴) ≤ 𝛿 + 1. 
If d = 𝛿 − 1, then m = 𝛿 and this is possible if G/Frat(G) ≅  𝐴𝛿 . However, in this case, A would be a 

trivial G-module and therefore d = ℎ𝐺(𝐴)=𝛿 = 𝑚, which is a contradiction. 

Now suppose that d= 𝛿. By Theorem 2.3, G is soluble and contains only one non-Frattini chief factor 

which is not G-isomorphic to A. If A is noncentral in G, then G/Frat(G) ≅  𝐿𝛿  and L/A is a cyclic p-

group . However, this implies 𝑟𝐺(𝐴) = 1, 𝑡𝐺(𝐴) = 0 and d = ℎ𝐺(𝐴) = 𝛿 + 1, which is a contradiction 

.If A is central, then G/Frat(G) ≅ 𝑉 ⋊ 𝑃,where P is a finite p-group, V is an irreducible P-module and 

d(P) =d. In particular, we obtain item (1) in Theorem 1.3. 

Finally assume d = 𝛿 + 1. Notice that in this case, L= A ⋊ H ,where A is a faithful, nontrivial 

,irreducible H-module, and  

                                                  m(H) ≤ 𝑚 − 𝛿 = 𝛿 + 2 − 𝛿 = 2. 
In particular, by Corollary 2.4, H is soluble. 

If m(H) =2, then G/Frat (G) ≅  𝐿𝛿 . In particular ,we obtain item (2) in Theorem 1.3. If m(H) =1, then 

there exist two normal subgroups 𝑁1 and 𝑁2 of G such that 1 ≤  𝑁1 ≤ 𝑁2, 𝐺/𝑁2 ≅ 𝐿𝛿 ,𝑁2/𝑁1 ≤
𝐹𝑟𝑎𝑡(𝐺/𝑁1) and 𝑁1/𝐹𝑟𝑎𝑡(𝐺) is an abelian minimal normal subgroup of G/Frat (G). As m(H) =1, H 

is cyclic of prime power order. In particular ,we obtain item (3) in Theorem 1.3. 

 

4- Examples for Theorems 1.2 and 1.3 

4.1 Monolithic groups: Examples for Theorem: 1.2. Let G be a monolithic primitive, S ≅ 𝑆𝑖 for 

each 1 ≤ I ≤ n, and a nonabelian  socle N = 𝑆1 × … × 𝑆𝑛.  A study on the number μ(G) = m(G)-m 

(G/N) may be found in [12]. Using conjugation, the group G operates on the set {𝑆1, … 𝑆𝑛 } of N's 

simple components. A group homomorphism G →Sym(n) is thus produced. Additionally, the 

subgroup X Aut S that results from 𝑁𝐺  (𝑆1)'s conjugation action on the factor 𝑆1  is a nearly simple 

group with socle S. 

By [12,Proposition 4],𝜇(𝐺) ≥ 𝜇(𝑋) = 𝑚(𝑋) − 𝑚(𝑋/𝑆).Assume m(G) =3. Observe that by 

Theorems 1.1 and 1.2 ,G/N is cyclic of prime power order .If X = S, then  

             3 = m(G) = m(G/N) +𝜇(𝐺)  ≥ 𝑚(𝐺/𝑁) + 𝜇(𝑋) = 𝑚(𝐺/𝑁) + 𝑚(𝑆) 

                                                     ≥ 𝑚(𝐺/𝑁) + 3. 

This implies that G/N =1 and G = S is a simple group. If  X ≠ S,then G ≠ 𝑁 and  

                             3 = m(𝐺) ≥ 𝑚(𝐺/𝑁) + 𝜇(𝐺) ≥ 1 + 𝜇(𝑋). 
Furthermore, X/S is a prime power order nontrivial cyclic group, so  

                   m(𝑋) = 𝑚(𝑋/𝑆) + 𝜇(𝑋) ≤ 1 + 𝜇(𝑋) ≤ 1 + 2 = 3 

By Corollary 2.4,m(X) =3.  

The groups  

                     P∑ 𝐿2(9), 𝑀10, 𝐴𝑢𝑡(𝑃𝑆𝐿2(7)) 
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Currently, to the best of the authors' knowledge, these are the only instances of nearly simple groups 

X with X ≠soc (X) and m(X) = 3. We think there are more situations like this, but the efficiency of our 

existing computer codes prevents us from conducting a thorough analysis. 

Let S := 𝑃𝑆𝐿2(7) and H:= Aut (𝑃𝑆𝐿2(7)), or let S := PS𝐿2(9) and H ∈  {𝑃 ∑ 𝐿2 (9)𝑀10}. Consider 

the wreath product W := H ⸯSym(n). Any element w ∈ 𝑊 can be written as w = 𝜋(𝑎1, … 𝑎𝑛), with 

𝜋 ∈ 𝑆𝑦𝑚(𝑛) and 𝑎𝑖 ∈ 𝐻 for 1 ≤ 𝑖 ≤ 𝑛. In particular , N = soc(𝑊) = 𝑆1 ×… × 𝑆𝑛 =
{(𝑠1, … . . 𝑠𝑛)|𝑠𝑖 ∈ 𝑆} .  

4.2 –Soluble groups: Examples for Theorem 1.3: We provide three simple examples, but one can 

create more complex instances using the same concepts. Let 𝐶𝑛 be the cyclic group of order n and 𝑆𝑛 

the symmetric group of degree n.  

The group G: = 𝑆3 × 𝐶2
𝑡 = 𝐶3: 𝐶2

𝑡+1 𝑤𝑖𝑡ℎ 𝑡 ≥ 1 satisfies d(G) = t+1 and m(G) = t+2. This provides 

instances of groups that meet Theorem 1.3  item (1). M(G) =d(G)+1 is also satisfied by the groups G:= 

(𝐶3
𝑡 ×  𝐶2) ×  𝐶2  with  𝐶2   acting on 𝐶3

𝑡 via inversion and G: = 𝑆4  =K :𝑆3,  where K is the Klein 

subgroup of 𝑆4. Groups satisfying item (2) in Theorem 1.3 are produced by these two cases, whereby 

H is abelian in the second case and m(H) = 2 in the first.  

Let K be the Klein subgroup of 𝑆4 as mentioned before and let G := K : (𝑆3 × 𝐶2
𝑡−1). This gives 

examples of groups satisfying item (3) in Theorem 1.3.  
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