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Abstract:

In according to this work, A generating set S for a group G is independent if and only if ,for every s
€ S, the subgroup created by S\{s} is correctly contained in G. We characterize the structure of finite
groups G such that the cardinalities of independent generating sets for G appear as exactly two integers.
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1- Introduction
The lowest number of generators of a finite group G is denoted by d(G) . A generating set S for a group
G is independent (also known called irredundant) if
(S\ {s}) <G foralls € S.

Let m(G) represent the largest independent generating set size for G. By Apisa and Klopsch, the finite
groups with m(G) = d(G) are categorized.
1.1 Theorem:(Apisa — Klopsch ,[Theorem 1.6]). G is soluble if d(G) = m(G). Additionally,

either

e For aprime p, G/Frat(G) is an elementary abelian p-group; or

e G/Frat(G) = PQ, where Q is a nontrivial cyclic g-group for distinct primes p and g, and P is an

elementary abelian p-group. Q acts faithfully on P via conjugation, and P (as a module for Q)
is the direct sum of m (G)-1 isomorphic copies of a single simple Q-module.

Given this outcome, Apisa and Klopsch propose a straight forward "classification problem™: identify
all finite groups G that satisfy m(G)-d(G) < c, given a nonnegative integer c. Glasby has lately drawn
attention to the specific instance ¢ = 1 (see[7,Problem 2.3]).
For every positive integer k with d(G) <k<m(G), G contains an independent generating set of
cardinality k, according to a nice result in universal algebra known as the Tarski irredundant basis
theorem (see, for example, [3,Theorem 4.4]). Therefore, the condition m(G) —d(G) =1 is equivalent to
the fact that there are only two possible cardinalities for an independent generating set of G.
Consider a finite group, G. Remember that the subgroup created by G's minimal normal subgroups is
called the socle of G, or soc(G). Additionally, G is considered monolithic primitive if it has a single
minimal normal subgroup, and the identity of G's Frattini subgroup Frat(G) is G. We establish the two
primary outcomes listed below in this work.
1.2 Theorem: Assume that G is a finite group with m(G) = d(G) +1 and Frat(G) = 1.G is a monolithic
primitive group and G/soc (G) is cyclic of prime power order if G is not soluble, as shown by d(G) =
2.Whiston and Sax[15] demonstrated that for any prime p that is not congruent to = 1 modulo 8 or 10,
m(PSL(2,p))=3. Specifically, we infer that there are an unlimited number of nonabelian simple groups
G with m(G) = d(G)+1 since d(S) = 2 for every non abelian simple group. In Section 4, we additionally
provide examples of non simple groups G such that m(G) = d(G)+1.
1.3 Theorem: Assume that G is a finite group with m(G) = d(G) +1 and Frat (G) = 1. In the event that
G is soluble, one of the following happens:
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(i) G =VxP, where V is an irreducible P-module that is not a p-group and P is a finite non cyclic p-
group; in this instance, d(G) = d(P);

(ii) G = V'x H, where V is an irreducible faithful H-module, m(H) = 2, and either t = 1 or H is abelian;
in this instance, d(G) = t+1;

(iii) Let N,/N; < Frat(G/N,) and G /N, = v* x H be two normal subgroups of G such that 1 < N; <
N, , Ny is an abelian minimum normal subgroup of G; in this case, d(G) = t+1. Let V be an irreducible
H-module and H Dbe a nontrivial cyclic group of prime power order.
Examples of finite soluble groups G with m(G) = d(G) +1 for each of the three scenarios emerging
from theorem 1.3 are provided in Section 4.

2 — Preliminary results
Let A be the unique minimal normal subgroup of monolithic primitive group L. Suppose that L* is the
k-fold direct product of L for any positive integer k. The subgroup L, of L, defined by, is the crown-
based power of L of size k.
L, = {(y, ... 1},) € L¥|l; = --- = I,, mod A}.
[4] establishes that for each finite group G, there is a homomorphic image L, of G and a monolithic
group L such that
(1) d(L /socL) < d(G); and
(2) d(Ly) = d(G).
This kind of group L, is known as a generating crown-based power for G.
The explicit computation of d(d) in terms of k and the structure of L is discussed in [4]. Evaluating
the maximal k for each monolithic group L such that L, is a homomorphic image of G is a crucial step
in determining d(G) from the behavior of the crown-based power homomorphic images of (G). The
primary factors of G have an equivalency relation that gives birth to this number, k. Here we provide
some information.
If groups G and A act on each other via automorphisms, then A is a G-group. Furthermore, if G does
not stabilize any nontrivial proper subgroups of A, then A is irreducible. If there is a group
isomorphism @:A —B such that @(g(a) )=g(@(a) ) for all a €A and g €G, then two G-groups, A and
B, are G-isomorphic. In accordance with [8], we declare that two irreducible G-groups, A and B,
designated as A ~;B,are G-equivalent if an isomorphism @&:A x G—BxG exists, which confines to
a G-isomorphism @:A —B and generates the identity G = AG/A—BG/B =G. Put another way, this
implies that the diagram commutes.
1o A->AXG -G -1
lg Lo || -1
1> B ->BxG ->G -1
Observe that two G-isomorphic G-groups are G-equivalent ,and the converse holds if A and B are
abelian.
Let A = X/Y is a Frattini chief factor if X/Y is contained in the Frattini subgroup of G/y ; this is
equivalent to saying that A is abelian and there is no complement to A in G. The number 6;(A4) of
non —Frattini chief factors that are G-equivalent to A, in any chief series of G, does not depend on the
particular choice of such a series.
Now, we denote by L. (A4) the monolithic primitive group associated to A, that is,
_[Ax(G/Cc(A) if Ais abelian,
Ls(A): = .
G/C;(4) otherwise.
If A is a non-Frattini chief factor of G, then L;(A) is a homomorphic image of G. More precisely,
there exists a normal subgroup N such that G/N = L;(A) and soc (G/N)~;A. We identify soc(LG (A))
with A, as G-groups.
Consider now all the normal subgroups N of G with the property that G/N = L;(A) and soc (G/N)~
A. The intersection R;(A) of all these subgroups has the property that G/R;(A) is isomorphic to the
crown —based power (Lg(4)) se(a) The soce I;(A) R;(A)of G/R;(A) is called the A-crown of G

and it is a direct product of ;(A) minimal normal subgroups G-equivalent to A.
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Note that if L is monolithic primitive and Ly is a homomorphic image of G for some k > 1, then L
= L. (A) for some non-Frattini chief factor A of G and k < 6,(A4) for some non-Frattini chief factor
A of G and k < 6;(A). Furthermore, if (LG(A))k is a generating crown-based power, then so is

(LG (A))ac(A); in this case, we say that A is a generating chief factor for G.

For an irreducible G-module M, set
re(M) == dimgnq,n M,
S6(M) = dimgng,,, H'(G, M),
te(M) = dimEndG(M)Hl(G/CG (M), M).
It can be seen that
Se¢(M) = te(M) + 6(M)
(see for example [10, 1.2]). Now ,define

e (M) if M is atrivial G — module,
he(M) = [SG(M)_]- ra(M)"‘tG(M)—l ]
—_— = + 2 otherwise.
¢ (M) r¢(M)
By [2,Theorem A] , t; (M) < r;(M) for any irreducible G-module M, and therefore
he(M) <6;(M) +1 (2.1)

The importance of h; (M) is clarified by the following proposition.

Proposition 2.1 [6,Proposition 2.1].1f there exists an abelian generating chief factor A of G, then
dd(G) = hs;(A).

When G admits a non abelian generating chief factor A, a relation between 8. (A4) and d(G) is provided
by the following result.

Proposition 2.2. If d(G) = 3 and there exists a nonabelian generating chief factor A of G, then
|A|d(G)—1 |A|d(G)—2

8¢ (A4) > 21CaueaLo(A)/A)| = 210 '
AutA(Lg gzl4|
Proof: Let A be a non-abelian generating main factor of G and assume that d(G) >3. Let @5 (M)
represent the number of ordered m-tuples (x4, ... ... x,) of elements of X that generate X for a finite
group X. Describe
L:=L;(A),

Y = |Caue a(L/A)],

8 := 6(4),

d:=d(G).
In [4] ,it is proved that if m > d(L), then

d(L,) < mifand only if k < % . 2.2)

By the main result in [13],d(L) = max(Z,d(L/A)). Since A is a generating chief factor, from the
definition, we have d(L/A) < d(L(;G(A)) =d(G). As 2 <d(G) , it follows d(L) <d(G). Now ,by
applying (2.2) with k = §;(A) and m = d(G) -1, we deduce that
0r/4(d(6)-1)
6c(A) > F——

gL(d(@-1)y
By [6,Corollary 1.2]
P1/a(d(6)-1) _ 4|41
0.(d(6)-1) =" (24)
Moreover, A = S™ where n is a positive integer and S is a nonabelian simple group.
In the proof of Lemma 1 in [5] ,it is shown that
y < n|S|" | Aut (S)].
Now, [9] shows that |Out(S)| < log,(|S|) and hence
y < nlS|"log,(IS]) < |S|"log,(ISI") = |Allog,(A]).  (2.5)
From (2.3) ,(2.4) and (2.5) ,we obtain
Or/a(d(G)-1) _ |A|4@-1  |y)d6)-2
8a(4) > 2L(d(G)—Dy = 21AIL0G,IAl . 2logylAl"
Recall that m(G) is the largest cardinality of an independent generating set of G.

(2.3)
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Theorem 2.3 [14,Theorem 1.3]. Consider a finite group, G. Then, for every primary series of G,
m(G) = a+b, where a and b denote the number of non-Frattini and nonabelian components,
respectively. Moreover, m(G) = a if G is soluble.

3- Proof of the main results
Given a finite group G, let d: = d(G) and let m: =m(G) . Suppose that m = d+1. Let A be a generating
chief factor of G and let 6§ := 5;(A), L = L;(A).
3.1 Alis nonabelian: First ,suppose that § > 2. By Theorem 2.3 ,m > 2§ and therefored > 2§ -1 > 3.
By Proposition 2.2,

|A|d—2 |A|28—3 6028—3

2log;|A|l ~ 2log,|A|l — 2log,60’

But this is never true.
Suppose now that § = 1. In this case, by the main theorem in [13], d = d(L) = max(2,d(L/A)) =2 and
therefore m =3. Since L is an epimorphic image of G, we must have m(L)< 3. However ,m(L)=> 3 by
Corollary 2.4. Hence ,m(L) = m=3 and therefore it follows from [11,Lemmall] that G/Frat (G)=
L.Finally, by Theorem 2.3, m(L) =3 implies m(L/A) < 1, and this is possible only if L/A is a cyclic p-
group .This concludes the proof of Theorem 1.2.
3.2 Ais abelian: It follows from Proposition 2.1 and (2.1) that

§—1<m-1=d= he(A) <5+1.
If d = 6§ — 1, then m = § and this is possible if G/Frat(G) = A%. However, in this case, A would be a
trivial G-module and therefore d = h;(A)=8 = m, which is a contradiction.
Now suppose that d= 6. By Theorem 2.3, G is soluble and contains only one non-Frattini chief factor
which is not G-isomorphic to A. If A is noncentral in G, then G/Frat(G) = Lgs and L/A is a cyclic p-
group . However, this implies r; (4) = 1,t;(A) =0 and d = h;(4) = § + 1, which is a contradiction
Af Ais central, then G/Frat(G) = V x P,where P is a finite p-group, V is an irreducible P-module and
d(P) =d. In particular, we obtain item (1) in Theorem 1.3.
Finally assume d = § + 1. Notice that in this case, L= A x H ,where A is a faithful, nontrivial
Jirreducible H-module, and

mH<m-§=6+2-6 =2.
In particular, by Corollary 2.4, H is soluble.
If m(H) =2, then G/Frat (G) = L. In particular ,we obtain item (2) in Theorem 1.3. If m(H) =1, then
there exist two normal subgroups N; and N, of G such that 1 < N; < N,,G/N, = Ls ,N,/N; <
Frat(G/N;) and N; /Frat(G) is an abelian minimal normal subgroup of G/Frat (G). As m(H) =1, H
is cyclic of prime power order. In particular ,we obtain item (3) in Theorem 1.3.

4- Examples for Theorems 1.2 and 1.3
4.1 Monolithic groups: Examples for Theorem: 1.2. Let G be a monolithic primitive, S = §; for
each 1 <1<n, and a nonabelian socle N =S; X ...x S,,. A study on the number u(G) = m(G)-m
(G/N) may be found in [12]. Using conjugation, the group G operates on the set {S, ... S,, } of N's
simple components. A group homomorphism G —Sym(n) is thus produced. Additionally, the
subgroup X Aut S that results from N (S1)'s conjugation action on the factor S; is a nearly simple
group with socle S.
By [12,Proposition 4],u(G) = u(X) = m(X) — m(X/S).Assume m(G) =3. Observe that by
Theorems 1.1 and 1.2 ,G/N is cyclic of prime power order .If X =S, then
3=m(G) =m(G/N) +u(G) = m(G/N) + u(X) = m(G/N) + m(S)
>m(G/N) + 3.
This implies that G/N =1 and G = S is a simple group. If X # S,then G # N and
3=m(G) = m(G/N) + u(G) = 1 + u(X).
Furthermore, X/S is a prime power order nontrivial cyclic group, so
mX) =mX/S)+uX)<1+uX)<1+4+2=3
By Corollary 2.4,m(X) =3.
The groups
PY. L,(9), M4, Aut(PSL,(7))
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Currently, to the best of the authors' knowledge, these are the only instances of nearly simple groups
X with X #soc (X) and m(X) = 3. We think there are more situations like this, but the efficiency of our
existing computer codes prevents us from conducting a thorough analysis.

Let S := PSL,(7) and H:= Aut (PSL,(7)), or let S := PSL,(9) and H € {P X, L, (9)M,,}. Consider
the wreath product W := H 'Sym(n). Any element w € W can be written as w = (a,, ... a,), with
m€Sym(n) and a; € H for 1 <i<n. In particular , N = soc(W) = §; X... X S, =
{(s1, ....5)|s; € S}.

4.2 —Soluble groups: Examples for Theorem 1.3: We provide three simple examples, but one can
create more complex instances using the same concepts. Let C,, be the cyclic group of order n and S,
the symmetric group of degree n.

The group G: = S3 X C} = C3: Ci* with t > 1 satisfies d(G) = t+1 and m(G) = t+2. This provides
instances of groups that meet Theorem 1.3 item (1). M(G) =d(G)+1 is also satisfied by the groups G:=
(Ct x C,) x C, with C, acting on C{ via inversion and G: = S, =K :S;, where K is the Klein
subgroup of S,. Groups satisfying item (2) in Theorem 1.3 are produced by these two cases, whereby
H is abelian in the second case and m(H) = 2 in the first.

Let K be the Klein subgroup of S, as mentioned before and let G := K : (S5 x C:™1). This gives
examples of groups satisfying item (3) in Theorem 1.3.
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